
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 23 September 2019
Markus Püschel, David Steurer
Johannes Lengler, Gleb Novikov, Chris Wendler

Algorithms & Data Structures Exercise sheet 0 HS 19

�e solutions for this sheet do not have to be submi�ed. �e sheet will be solved in the �rst exercise
session on 23.09.2019.

Exercises that are marked by ∗ are challenge exercises.

Shortest Paths
Exercise 0.1 Find the Shortest Path.

Consider a hypothetical �oor plan such that the area is organized in hexagonal cells as shown in Figu-
re 1. We begin at the cell marked start, and we want to reach the cell marked end. We can travel from
one cell to another, if the two cells are neighbouring, i.e. they share an edge. Each time we cross from
one cell to a destination cell, we consider the move as a single step and the destination cell as visited.
We want to �nd the shortest path from the start to the end, minimizing the number of steps.

START

END

Figure 1: Floor plan

Consider the following algorithm:

1. We visit the start cell and write the number 0 on it.

2. We look only at the cells that have been visited, but have unvisited neighboring cells (if such cells



do not exist we stop this procedure). Among such cells we choose some cell with the smallest
number n. �en we visit all its unvisited neighboring cells and write the number n+ 1 on them.

Your tasks:

a) Execute the algorithm on the �oor plan given in Figure 1, writing numbers on each cell.

b) How long is the shortest path from the start cell to the end cell?

�e next tasks are about the execution of the algorithm on an arbitrary �oor plan.

c)∗ Prove that if a cell C has number n, then for any 0 ≤ k < n we visit all cells with number k before
C .

d)∗ Prove that if a cell C has number n, then all its neighboring cells have numbers at most n+ 1.

e)∗ Prove by mathematical induction that a cellC has number n if and only if the length of the shortest
path from the start cell to C is n.

Asymptotic Notation
When we estimate the number of elementary operations executed by algorithms, it is o�en useful
to ignore constant factors and instead use the following kind of asymptotic notation, also called O-
Notation. We denote by R+ the set of all (strictly) positive real numbers and by R+

0 the set of nonne-
gative real numbers.

De�nition 1 (O-Notation). Let f : N→ R+.O(f) is a set of all functions g : N→ R+ such that there
exist C > 0 and T > 0 (both may depend on g) such that for all n > T , g(n) ≤ Cf(n).

If we replaceN byR+ (and n by x ∈ R+) everywhere in this de�nition, we will get a de�nition ofO(f)
for functions that are de�ned on R+.

Instead of working with this de�nition directly, it is o�en easier to use limits in the way provided by
the following theorems.

�eorem 1 (�eorem 1.1 from the script). Let f : R+ → R+ and g : R+ → R+.

• If lim
x→∞

f(x)
g(x) = 0, then f ∈ O(g) and g /∈ O(f).

• If lim
x→∞

f(x)
g(x) = C ∈ R+, then f ∈ O(g) and g ∈ O(f).

• If lim
x→∞

f(x)
g(x) =∞, then f /∈ O(g) and g ∈ O(f).

�e theorem holds all the same if the functions are de�ned on N instead of R+. In general, lim
n→∞

f(n)
g(n)

is the same as lim
x→∞

f(x)
g(x) if the second limit exists.

�eorem 2 (L’Hôpital’s rule). Assume that functions f : R+ → R+ and g : R+ → R+ are di�erentiable,
lim
x→∞

f(x) = lim
x→∞

g(x) =∞ and for all x ∈ R+, g′(x) 6= 0. If lim
x→∞

f ′(x)
g′(x) = C ∈ R+

0 or lim
x→∞

f ′(x)
g′(x) =∞,

then

lim
x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)
.

2



Remark. Some functions that we will consider are not de�ned at small natural numbers (for example,
ln(lnn) is not de�ned at n = 1). So in all exercises about asymptotic notation we assume that n is large
enough, say, n ≥ 10.

Exercise 0.2 Comparison of functions.

Show that

a) 2n ∈ O(3n) and 3n ∈ O(2n).

b) n ∈ O(n log n), but n log n /∈ O(n).

c) 10n2 + 100n+ 1000 ∈ O(n3), but n3 /∈ O(10n2 + 100n+ 1000).

d) 2n ∈ O(3n), but 3n /∈ O(2n).

e) n lnn ∈ O(n1.01), but n1.01 /∈ O(n lnn).

f) n ∈ O(en), but en /∈ O(n).

g) n2 ∈ O(en), but en /∈ O(n2).

h)∗ n100 ∈ O(1.01n), but 1.01n /∈ O(n100).

i)∗ log1002 n ∈ O(2
√

log2 n), but 2
√

log2 n /∈ O(log1002 n).

j)∗ 2
√

log2 n ∈ O(n0.01), but n0.01 /∈ O(2
√

log2 n).

For the next exercise you may use the following theorem.
�eorem 3. Let f, g, h : N→ R+. If f ∈ O(h) and g ∈ O(h), then

1. for any constant c ≥ 0, cf ∈ O(h).

2. f + g ∈ O(h).

Notice that for all real numbers a, b > 1, loga n = loga b · logb n (where loga b is a positive constant).
Hence loga n ∈ O(logb n). So you don’t have to write bases of logarithms in asymptotic notation, that
is, you can just write O(log n).

Exercise 0.3 Simplifying expressions.

Write the following in tight asymptotic notation, simplifying them as much as possible. It is guaranteed
that all functions in this exercise take values in R+ (you don’t have to prove it).

a) 5n3 + 40n2 + 100

b) 5n+ lnn+ 2n3 + 1
n

3



c) n lnn− 2n+ 3n2

d) 23n+ 4n log5 n
6 + 78

√
n− 9

e) log2
√
n5 +

√
log2 n

5

f)∗ 2n3 +
(

4
√
n
)log5 log6 n +

(
7
√
n
)log8 log9 n

Exercise 0.4 Some properties of O-Notation.

Let f : R+ → R+ and g : R+ → R+.

a) Show that if f ∈ O(g), then f2 ∈ O(g2). You can assume that lim
x→∞

f(x)
g(x) = C ∈ R+

0 .

b) Give an example where f ∈ O(g), but 2f /∈ O(2g).

Induction
�e next exercise is about the principle of mathematical induction.

Exercise 0.5 Induction.

a) Prove by mathematical induction that for any positive integer n,

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

b) (�is subtask is fromAugust 2019 exam). LetT : N→ R be a function that satis�es the following
two conditions:

T (n) ≥ 4 · T (n2 ) + 3n whenever n is divisible by 2;
T (1) = 4.

Prove by mathematical induction that

T (n) ≥ 6n2 − 2n

holds whenever n is a power of 2, i.e., n = 2k with k ∈ N0.

4


